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: Estimated prior target mean value for the control material    
  under monitoring 
: Estimated maximum acceptable inter-assay standard de 
   viation (SD) according to the manufacturer  
: Estimated inter-assay SD during method validation in  
   each laboratory  

 
Introduction 

Internal quality control (IQC) is an important tool for estab-
lishing whether an analytical test system produces reliable 
results. For IQC one or more quality control (QC) samples are 
run prior to or simultaneously with patient samples. If the re-
sults of the control samples are within certain predefined ac-
ceptance limits, the results of patients’ samples can be re-
leased. QC sample test results are frequently displayed in so-
called control charts. To evaluate these QC sample results and 
look into trends statistical process control (SPC) methods are 
used.  One of the well-known QC rules is the 12s QC rule [1,2] 
which signals anything that exceeds two SD from the expected 
value. For each new batch of IQC samples the expected value 
(mean value) and SD need to be established to construct a 
control chart. This requires two phases: I (preliminary) & II 
(testing). The former is done in an off-line mode (i.e. the QC 
sample is not yet used for making a decision about the status 
of an analytical system), where first we estimate the parame-
ters used to build the chart and then examine the data retro-
spectively, i.e. once phase I is completed all the phase I data 
will be examined for conformance with the established limits. 
On the other hand phase II runs on-line, i.e. each new reading 
is plotted on the chart and on-line inference is available. It is 
important not to forget the statistical aspect of the IQC man-
agement regarding the assumption of approximating the nor-
mal distribution when enough data are observed. In other 
words the phase I management is very crucial with respect to 
the conventional phase II reliability.  

In this contribution we focus our attention on the conven-
tional preliminary phase, where the major goals are both to be 
able to perform efficient QC monitoring even when we have 
very few data points available and to obtain “reliable” esti-
mates of the mean and the inter-assay SD for the next long-
term conventional QC management. It is possible to run an off-
line preliminary phase in advance, using new control batches 
before actually changing batches. But there is considerable 
technical and economic interest in getting round this conven-
tional preliminary phase management with regard to the high 
number of laboratory tests especially when the measurement 
series are not frequent. Unreliable estimates of the mean and 
the inter assay SD can have from serious to catastrophic re-
sults on the performance of the classical control chart in both 
phases I & II [3,4]. This means that QC results can either be 
falsely rejected or accepted. This implies the risk of a waste of 
resources (falsely rejected) or the risk of a wrong interpreta-
tion of patient sample results (falsely accepted).  

The classical approach during the preliminary phase (off-
line method), assumes the process is in the in-control (IC) state 
(i.e. no abnormal cases should be present), with independent 
identically distributed (IID) observations. The longer the pre-
liminary phase, the more accurate the estimates, but simulta-
neously the more likely it is that the process will deviate from 
its IC state. Typically, the mean and inter-assay SD are estimat-
ed from at least 20 and 30 control values respectively [5]. The 
preliminary phase uses up a great deal of resources, given the 
large panel of tests a laboratory has to carry out. This is espe-
cially true as laboratory examinations are rarely performed in 
continuous series, resulting in overlaps with currently used QC 
samples that are very hard to manage. 

This work proposes an alternative monitoring mechanism 
that will not require a preliminary phase, allowing on-line in-
ference from the beginning (i.e. from the second measure-
ment onwards). It is based on the Bayesian logic where we 
utilize available manufacturer’s prior information. The two 
main manufacturer prior parameters are:  
1. Prior target mean of assayed quality control materials 

(manufacturer control materials with assigned values). 
2. Maximum acceptable inter-assay SD value on methods with 

reagents and device both provided by the manufacturer 
(technical notices specifying the maximum acceptable inter 
assay SD) 

We provide an Excel spreadsheet (downloadable on the ECAT 
website) where the proposed monitoring method can be ap-
plied to the process readings once we specify three parameter 
values: 
i) : the prior target mean value for the assayed control-
material being monitored (i.e. the target value provided by the 
manufacturer). 

Focus Article:  
How to establish the mean and standard deviation of internal 
quality control samples to construct  control charts. 
The Bayesian approach with an example of D-dimer 
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̂ii) : the maximum acceptable SD specified by the manufac-
turer. 
iii) : each laboratory’s inter-assay SD determined during 
the method-validation phase (with at least 30 data points [5]). 

The data can be immediately used for on-line monitoring. 
The data is put sequentially in the Excel file, as they arrive and 
have immediate inference for the process, (i.e. “ALARM” if 
there is a loss of statistical control state). At the end of phase I 
the Excel tool provides a mean (when we have at least 20 ob-
servations in phase I), which can then be implemented in a 
conventional control chart for the testing phase. With 30 data 
points, the Excel tool will also calculate the inter-assay SD val-
ue that one can compare to the inter-assay SD determined 
during the validation phase of the method in order to identify 
an underlying matrix effect [6]. 
Methods 
Estimating the required parameter values for the Bayesian 
control chart 

The construction of the Bayesian control chart (BCC) re-
quires three parameters:      and        which are obtained from 
manufacturer specifications and      which reflects the accuracy 
of measurements in the laboratory and is established during 
the laboratory validation process. 

For estimating      and      , we can use the fact that the man-
ufacturer normally provides the acceptance range for the IQC 
results (i.e. the mean +/- 2 * SD)  and a coefficient of maximum 
acceptable variation CV for a given process. The data have a 
high probability of being within these limits if the process is 
under the in-control state. Then an estimate of      and      can 
be calculated by :  

 
(L = lower limit of acceptance range; U = upper limit of ac-
ceptance range) 
Example : L = 0.8 IU/mL ; U = 1.0 IU/mL ; CV = 5 % 

= (0.8 + 1) / 2 = 0.9 ;       = 0.9 * 0.05 = 0.045 
The parameters are used in the Excel template. 

Regarding    , i.e. the accuracy of the measurement, it de-
pends on various laboratory factors: equipment, experience of 
the technician, etc. It can be assessed during in-laboratory 
method validation upstream of implementation, as the inter-
assay SD, varying according to the degree of control over these 

nuisance parameters [7].  
As data are obtained sequentially, they are entered into the 

Bayesian chart and from the second observation it is valid to 
perform inference. During the preliminary phase the parame-
ters      and     are continuously updated based on the actual 
IQC results obtained. The initial prior settings of     and      , will 
affect the performance of the chart only for the very first few 
observations, and their effect will vanish as more data become 
available. Thus, as long as we avoid extreme choices (such as 
very small     ), the chart will be quite robust even when poor 
estimates were used for these prior settings. On the other 
hand, the chart will be more sensitive to the parameter   , 
which reflects the accuracy of the laboratory, since it will be 
fixed and not updated at any stage. A sensitivity analysis in the 
Results section examines the effect of parameter misspecifica-
tion in the case study considered.  

Technical details of the BCC construction, along with an 
Excel BCC template that runs the suggested methodology can 
be found in the member section of the ECAT website and can 
be tested by interested users. 
Results  
Case study: Reagent and automated coagulation analyzer 

An Instrumentation Laboratory (IL) (Bedford, MA, USA) 
automate and reagents were used (analyzer: ACLTOP 500 CTS®; 
reagent: D-Dimer HS 500® for D-Dimer quantification in citrat-
ed human plasma). Control material was a low-control sample 
(D-Dimer HS 500® control level 1), with prior allowable inter-
assay SD defined by IL as 65 (    )  and  prior  mean  value  544  

gL-1. 
Acceptability of the 20 control values was confirmed as 

they had been collected during a phase of overlap with anoth-
er control batch with the same reference, in turn collected 
respecting the 13s rule. In the new IQC batch, IL’s prior target 

value was 544 gL-1, and the maximum acceptable inter-assay 
SD should not exceed 65 when validated in each laboratory. In 
the checking phase, inter-assay SD in our laboratory was 49     
(    ) [7]. 
Analysis of preliminary phase data 

After the preliminary phase, performed on the 20 values, 

the mean was 620 gL-1 and inter-assay SD 49, while the con-
trol limits were set at ±3.016 so that a 5% false alarm probabil-
ity (FAP) was achieved for the whole sequence of 20 values 
(Figure 1a). This is called the 13s method. To be equivalent to 
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Figure 1. a) Shewhart chart and b) Bayesian control chart (BCC) during preliminary phase 
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the BCC, the 13s chart was selected which plots the control 
limits at 3.01599 SD from the center line, achieving a 5% over-
all FAP. 

The BCC identified no outliers during a preliminary phase 
well controlled by the overlap phase: i.e., the BCC was not sub-
ject to false rejection with     =49 (Figure 1b). 
Analysis of data after the preliminary phase with a shift sce-
nario 

The 13s rule and BCC with    =49 detected results outside 
the established limits simulated after the preliminary phase 
(Figures 2a and 2b).  

Examining the sensitivity to the parameter estimates we 
found that the BCC detected simulated shifts after the prelimi-
nary phase with    < 65, while for    > 65, it no longer detected 
all alarms (Figure 3). This is expected as the large value of     is 
associated with rather inaccurate laboratory measurements 
that can help outlying observations to escape detection. For 
the remaining two parameters,      and      the sensitivity analy-
sis showed very minor differences as we alter them. Further-

more, these differences were observed only in the very first 
few data in the process. 
Discussion 

With the introduction of a new batch of control samples it 
is necessary to run a preliminary phase. During this phase QC 
data for accepting or rejecting an analytical was run with the 
ongoing batch. However, running a preliminary phase can be 
costly and time-consuming, especially when particular meas-
urements are not frequently performed [4]. Therefore there is 
considerable technical and economic interest in getting round 
this problem. 

The laboratory may be thought to focus only on manufac-
turer specifications to define control value acceptability. How-
ever it is not unreasonable to use manufacturer specifications 
(i.e. manufacturers’ prior target values and allowable analytic 
performance are derived from plentiful data from multiple 
machines and batches), if the analytic system is a good one.  

Laboratories with good analytic practice (small inter-assay 
SD) benefit most from BCCs (Figure 3). They are better able to 
detect outliers than laboratories with poorer analytic perfor-
mance. Laboratories must therefore be as careful as possible 
in estimating prior inter-assay SD in the validation phase.  

The Bayesian approach is also useful for both methods 
which are rarely done and methods using a small batch of IQC 
samples. It is possible to monitor this kind of method with this 
short-term Bayesian approach. 

Thus, both theoretically and practically, the laboratory is 
bringing its method under control as soon as it begins imple-
menting its IQC values. At least this Bayesian model can serve 
as a complement to a conventional approach, which can be 
reintroduced as soon as there are enough reliable IQC data. 
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Figure 2. a) Shewhart chart and b) Bayesian control chart (BCC) with shifts at day 21 and day 22  

Figure 3. Bayesian control chart (BCC) with shifts at day 21 

and day 22 and sensitivity analysis on « own inter assay SD 

estimated at method validation phase (tau) » 


